Engineering Institute of Technology
On-Campus - Master Of Engineering (Industrial Automation)
There is a global shortage of automation, instrumentation, and control engineers due to the rapid growth of new industries and technologies.
The Master of Engineering (Industrial Automation) addresses the growth and new technologies in the Industrial Automation industry. The Master of Engineering (Industrial Automation) course offers twelve core modules and a project thesis to provide the knowledge and skills required for this industry. Students with a background in electrical, electronics, mechanical, instrumentation & control, or industrial computer systems engineering would benefit from this program as it prepares them for automation in the process and manufacturing industries.
Industrial Automation Introduction provides the fundamental knowledge that is essential in the automation area. Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions.
Furthermore, Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Instrumented Systems introduces the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Advanced Process Control covers advanced control systems, algorithms and applications. Machine Learning for Industrial Automation provides the intelligent control basics in the automation area.
The Project Thesis, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.
Course start dates
- 24th February 2025
- 4th August 2025
Average duration:
24 months
Locations:
Level 5 301 Flinders Lane Melbourne, VIC, 3000
8 Thelma Street, West Perth, WA, 6005